Important ArcGIS 10.1 updates

Greetings,

ESRI released Service Pack 1 for ArcGIS 10.1 in late October. This service pack fixes several hundred bugs, and includes other interesting functionality (mainly the release of 64-bit background geoprocessing, allowing for the use of > 4GB of RAM!).

To find current patches and service packs for 10.1, go to http://support.esri.com/ and choose the link Patches and Service Packs under Downloads. Choose ArcGIS for Desktop from the list. Under the Browse Filter, uncheck Version 10 and click Go. Only updates for ArcGIS 10.1 will be listed.

Important patches to apply:

ArcGIS 10.1 Service Pack 1 for (Desktop, Engine, Server)

ArcGIS 10.1 SP1 for Desktop Background Geoprocessing (64-bit) (found under the Product section ArcGIS 10.1 SP1 for Desktop. This product must be installed AFTER SP 1 is installed)

ArcGIS 10.1 SP1 (Desktop, Engine, Server) Mosaic Dataset/Image services reprojection Patch (install after Service Pack 1)

Please note if you have other software installed (ArcGIS for Server or the optional software add-ons Data Reviewer or Workflow Manager) there are separate updaters for these products.

If you are unsure what you have installed, search for PatchFinder for Windows on the SP 1 download page. This software (a tiny ~700 kb download) will report what ESRI products have been installed on your computer.

DNRGPS tutorial – GIS data in Michigan GeoRef to GPS

1) Launch ArcMap and add your data in Michigan GeoRef coordinates to your map.

2) Make ArcToolbox visible and expand Data Management Tools > Projections and Transformations > Feature > and double-click the Project tool to open it. You can also open the Search window (Windows > Search or Ctrl-F) and search for the Project (Data Management) tool.

3) Select the layer you want on your GPS as the Input Dataset and verify that the Input Coordinate System is NAD_1983_Michigan_GeoRef_Meters. Choose the location and name of your output file (maybe adding WGS84 to the end of the file name). Be sure you are saving a shapefile and not a geodatabase feature class. Click the Spatial Reference Properties icon to select the Output Coordinate System. Expand Geographic Coordinate Systems, then World, and select WGS 1984.
Tip: If you right-click on this (or any) projection definition and choose “Add to Favorites” it will be easier to find in the future.

4) Click OK to run the tool. Your re-projected layer will be added to your map after the tool has finished. You can verify your new layer’s projection by opening its properties and examining the Source tab. If all went well, the Projected Coordinate System should read GCS_WGS_1984.

5) Launch DNRGPS. Choose File > Load From > File… and navigate to the shapefile you just saved. Select it and click Open. Verify that the values in Latitude and y_proj are the same, that Longitude and x_proj are the same, and Projection: No Projection is shown at the bottom of the window. If the values are different or a projection name is shown, something was not set properly in a earlier step and DNR GPS is converting projected to unprojected coordinates, perhaps incorrectly…

6) Connect your GPS and turn it on. You should see a message near the top of the window that your GPS now connected. If you don’t, verify the GPS is on, check your cable, and select GPS > Connect to Default GPS. If that fails, try GPS > Find GPS.

7) To transfer your GPS data, select Waypoint > Upload. Your points should appear in the DNR GPS window. (if you loaded a line shapefile into DNR GPS, choose Track > Upload). You should see a status message after the upload is complete.

DNR GPS tutorial – GPS data to Michigan Georef in ArcGIS

1) Launch DNR GPS and ensure the projection is set to None (File > Set Projection and click the Set Projection to NONE button:

 

 

2) Connect your GPS and turn it on. You should see a message near the top of the window that your GPS now connected. If you don’t, verify the GPS is on, check your cable, and select GPS > Connect to Default GPS. If that fails, try GPS > Find GPS.

3) To transfer your GPS data, select Waypoint > Download. Your points should appear in the DNR GPS window.

4) To save your GPS data, choose File > Save To > File… and Save as type… text file (comma delimited) (*.txt). Consider this file your ‘backup’ that can be easily opened by DNR GPS without issue. Next, choose File > Save To > File… and Save as type: ESRI Shapefile (*.shp). This file can be manipulated in your GIS software.

5) Launch ArcMap and add the shapefile you just saved in step 4 to your map.

6) Make ArcToolbox visible and expand Data Management Tools > Projections and Transformations > Feature > and double-click the Project tool to open it. You can also open the Search window (Windows > Search or Ctrl-F) and search for the Project (Data Management) tool.

7) Add your shapefile as the Input Dataset and verify that the Input Coordinate System is GCS_WGS_1984. Choose the location and name of your output file (maybe adding MGRF to the end of the file name). Click the Spatial Reference Properties icon to select the Output Coordinate System. Expand Projected Coordinate Systems, then State Systems, and select NAD 1983 Michigan GeoRef (Meters).

Tip: If you right-click on this (or any) projection definition and choose “Add to Favorites” it will be easier to find in the future.

8) Click OK to run the tool. Your re-projected layer will be added to your map after the tool has finished. You can verify its projection by opening the layer’s properties and examining the Source tab. If all went well, the Projected Coordinate System should read NAD_1983_Michigan_GeoRef_Meters.

DNRGPS updated

DNRGPS 6.0.0.15 was released recently. This version fixes a couple of major bugs. See the release notes for details.

Tip: this software does not, at present, handle the Michigan GeoRef projection properly. I have filed a bug report to the developers, but saving files in either unprojected lat/lon or UTM and converting in ArcGIS to Michigan GeoRef is the best solution until this problem is fixed.

Tutorial – formatting tabular data for joining to ArcGIS features

Here is a short tutorial that outlines the steps for formatting spreadsheet (tabular) data in preparation for joining it to features (points, lines, or polygons).

If you aren’t familiar with joins, they allow you to attach attribute data that is separate from (external to) your features. In order for joins to work, a common field that contains a unique identifier is needed in both the features and the external data. A join will match records in the external data table to features in the GIS layer based on the values in the unique ID field.

An example of features and data that have this relationship is Census tracts, which change infrequently (features). To the tracts you can join any number of metrics collected or calculated by the Census bureau: residents tabulated by race, income, education; housing stock and attributes (tabular data).

This is a very generic and basic tutorial. Please email with questions or comments.